Affiliation:
1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454150, China
2. China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400037, China
Abstract
The dynamic uniaxial impact compression test was carried out by the Hopkinson pressure bar test system to test the dynamic mechanical properties of concrete with different fly ash contents (
, 10%, 20%, 30%, 40%, and 50%) under 0.3 MPa air pressure. The influences of fly ash content variation on the mechanical characteristics, ductility characteristics (which were calculated according to the concrete ductility formula), energy dissipation characteristics, and surface specific energy variation characteristics (which were calculated by converting the fragments into spheres) of concrete were analyzed, respectively, and the influences of fly ash content variation on the fragment distribution and fractal features of concrete were obtained by statistical analysis. In addition, the application of concrete with the change of fly ash contents in rock burst mine was studied. The results showed that the dynamic peak stress, residual stress, ductility characteristics, fragments distribution, fractal dimension, transmitted energy, dissipated energy, and surface specific energy change significantly with the increase of fly ash contents under dynamic uniaxial impact compression. By analyzing the relationship between surface specific energy and concrete fragment distribution, it could be found that the energy dissipated by stress waves in concrete can be estimated by using the particle size distribution of the field fragments.
Funder
National Natural Science Foundation of China
Subject
Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献