Affiliation:
1. Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan
2. Computer Engineering Department, Umm AlQura University, Mecca 24381, Saudi Arabia
3. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 44000, Pakistan
Abstract
This paper presents a hybrid model, named as hybrid deep neural network, which combines convolutional neural network, particle swarm optimization, and gated recurrent unit, termed as convolutional neural network-particle swarm optimization-gated recurrent unit model. The major aims of the model are to perform accurate electricity theft detection and to overcome the issues in the existing models. The issues include overfitting and inability of the models to handle imbalanced data. For this purpose, the electricity consumption data of smart meters is taken from state grid corporation of China. An electric utility company gathers the data from the intelligent antenna-based smart meters installed at the consumers’ end. The dataset contains real-time data with missing values and outliers. Therefore, it is first preprocessed to get the refined data followed by feature engineering for selection and extraction of the finest features from the dataset using convolutional neural network. The classification of electricity consumers is performed by dividing them into honest and fraudulent classes using the proposed particle swarm optimization-gated recurrent unit model. The proposed model is evaluated by performing simulations in terms of several performance measures that include accuracy, area under the curve,
-score, recall, and precision. The comparison between the proposed hybrid deep neural network and benchmark models is also performed. The benchmark models include gated recurrent unit, long short term memory, logistic regression, support vector machine, and genetic algorithm-based gated recurrent unit. The results indicate that the proposed hybrid deep neural network model is more efficient in handling class imbalanced issues and performing electricity theft detection. The robustness, accuracy, and generalization of the model are also analyzed in the proposed work.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献