Mobile Proton-Exchange Membrane Fuel Cell Powered by Diesel Fuel: System Simulation and Life Cycle Analysis

Author:

Hwang Hyewon1ORCID,Yoon Jisu1ORCID,Choi Wonjae12ORCID

Affiliation:

1. Division of Mechanical and Biomedical Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

2. Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

Abstract

Diesel engine generators used at construction sites generate noise, vibration, and large amounts of pollutant emissions. With the strengthening of emission standards for construction equipment, technologies must be developed to meet new requirements. We proposed and analyzed a mobile proton-exchange membrane fuel cell diesel-powered system to address these issues. The proposed system consisted of an autothermal reformer, a proton-exchange membrane fuel cell, and a balance of plant components. Previous studies on the system have not explored the optimal design and operating condition of the system and have not shown whether the proposed system is superior to the system using the hydrogen-fueled proton-exchange membrane fuel cell system in the life-cycle greenhouse gas emissions point of view. In this study, we clarified system operation characteristics, determined the operational design point, and evaluated system performance and life-cycle greenhouse gas emissions. The system was analyzed by constructing a zero-dimensional simulation model. Several control parameters were varied in parametric studies to determine the operational design point (steam-to-carbon ratio of 2, oxygen-to-carbon ratio of 0.5, fuel utilization factor of 0.85, and heat exchanger effectiveness of 0.85). Considering system performance, the determined design point achieved a 32.3% efficiency. Additionally, we assessed the life-cycle greenhouse gas emissions of the system and compared them with those of an alternative system, which is a hydrogen-fueled proton exchange membrane fuel cell system. It was confirmed that in the United States of America, the proposed system emits 1010.2 g-CO2-eq/kWh of greenhouse gas at a 300 km fuel transportation distance, which is similar to a hydrogen-fueled proton-exchange membrane fuel cell system (1001.1 g-CO2-eq/kWh). The proposed system emits less greenhouse gas emissions than the hydrogen-fueled proton-exchange membrane fuel cell system if the distance from the hydrogen production site to the construction site is more than 318 km. Therefore, for a construction site far from a hydrogen production plant, the proposed diesel-fueled proton-exchange membrane fuel cell system is preferable from both the greenhouse gas emissions and convenience perspectives.

Funder

K-water

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference48 articles.

1. Commission Delegated Regulation (EU) 2017/655 of 19 December 2016 supplementing Regulation (EU) 2016/1628 of the European Parliament and of the Council with regard to monitoring of gaseous pollutant emissions from in-service internal combustion engines installed in non-road mobile machinery;European Union;Official Journal of the European Union,2017

2. Nonroad Diesel Engines. DieselNet;United States

3. DieselNet;CARB developing tier 5 emission standards for off-road engines

4. Introduction of the new standard of domestic construction and agricultural equipments. Ministry of Environment;Industry-Academic Cooperation Foundation of Chonnam National University

5. Influence of Fuel Oxygenation on Regulated Pollutants and Unregulated Aromatic Compounds with Biodiesel and n-Pentanol Blends

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3