Adsorptive Removal of Azo Dye New Coccine Using High-Performance Adsorbent-Based Polycation-Modified Nano-Alpha Alumina Particles

Author:

Doan Thi Hai Yen1ORCID,Pham Hong Anh2,Nguyen Ngoc Huyen2,Le Thi Dung1,Nguyen Thanh Binh1,Le Thanh Son1

Affiliation:

1. Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam

2. Nguyen Sieu High School, Yen Hoa, Cau Giay, Hanoi, Vietnam

Abstract

The azo dyes new coccine (NCC) were successfully removed through the adsorption onto PVBTAC-modified α-Al2O3 particles. The optimal conditions of both the surface modification by PVBTAC adsorption and the NCC adsorption were thoroughly investigated. Formerly, polycations PVBTAC were adsorbed onto the nanosized α-Al2O3 particles atpH8, NaCl 100 mM, with a contact time of 2 h, and initial concentration of 1000 ppm to modify the α-Al2O3 surface. Latterly, the NCC adsorptive removal was conducted atpH8, NaCl 10 mM, α-Al2O3 adsorbent dosage of 3 mg mL−1, and a contact time of 45 min. Interestingly, the optimalpHof 8 potentially applies to treat real wastewater as the environmentalpHrange is often about 7–8. High removal efficiency and adsorption capacity of the NCC azo dyes were, respectively, found to be approximately 95% and 3.17 mg g−1 with an initial NCC concentration of 10 ppm. The NCC adsorption on the modified α-Al2O3 particles was well fitted with a Freundlich model isotherm. A pseudo-second kinetic was more suitable for the NCC adsorption on the PVBTAC-modified α-Al2O3 surface than a pseudo-first kinetic. The NCC adsorptive removal kinetic was also affirmed by the FT-IR spectra, based especially on the changes of functional group stretch vibrations of −SO3− group in the NCC molecules and −N+(CH3)3 group in the PVBTAC molecules. The high reusability of the α-Al2O3 particles was proved to be higher than 50% after four generation times.

Funder

University of Hyogo

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3