Effect of Analytical Particle Size on Pore Structure of High Volatile Bituminous Coal and Anthracite Using Low-Pressure N2 and CO2 Adsorption

Author:

Dang Zheng1,Wang Xiaoming1ORCID,Hou Shihui2ORCID,Pan Sidong1

Affiliation:

1. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Wuhan 430074, China

2. Laboratory of Geotechnical Engineering, Jinggangshan University, Ji’an 343000, China

Abstract

To investigate the effect of analytical particle size on pore structure, mesopore (2-50 nm) and micropore (<2 nm) characteristics of high volatile bituminous coal and anthracite with different particle size were determined using low-pressure N2/CO2 adsorption analyses. Mesopore structure parameters in the two coals increase with decreasing particle size, which are attributed to the opening of closed mesopores during the pulverization process. The closed mesopores with different pore size ranges are opened with a certain percentage in high volatile bituminous coal, but opened irregularly in anthracite during pulverization. Micropore structure parameters of the two coals show different variations with decreasing particle size, which are not related to the reconstituted micropore structure. Mineral matter contributes more mesopores than organic matter in anthracite and exerts the negative effect on micropore in the two coals. An evolution model is established to elaborately describe the change of pore structure during the pulverization process, where mineral matter plays a mediating role in the effect of particle size on pore structure.

Funder

Jiangxi Provincial Natural Science Foundation

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3