Prediction Modeling and Sensitivity Analysis of Robot Bone Milling Temperature Operated by a Doctor

Author:

Tian Heqiang1ORCID,Pan Jingbo1,Gao Yu1,Dang Xiaoqing2ORCID,Tian Bin1,Meng Debao1,Yao Yanan1

Affiliation:

1. Shandong University of Science and Technology, Qingdao 266590, China

2. Qingdao Municipal Hospital Group, Qingdao 266073, China

Abstract

Bone milling is a common method in robot orthopedic surgery. However, excessive milling temperature will cause thermal necrosis of bone cells and tissues. It is necessary to carry out further research and analysis on the robot bone milling process considering the lamina milling skills of spinal surgeons and clinical practice to reduce the damage to bone cells and nearby tissues and obtain good cutting surface quality. Considering the randomness of milling parameters during operation, a prediction method of milling temperature model for ball milling cutter considering the doctor’s surgical skills was proposed based on response surface method. Because of material anisotropy and microstructure difference between the cortical bone and cancellous bone, this paper would analyze the influencing factors in different bone layers to establish the prediction model of milling temperature in the segments of cortical bone and cancellous bone. Also, the influence and distribution of milling parameters on temperature in three cutting modes such as parallel cutting mode, cross cutting mode, and vertical cutting mode in the cortical bone region were analyzed. The parameter sensitivity of the milling temperature prediction model was analyzed by the Sobol method, and the influence of the input parameters on the output milling temperature was analyzed quantitatively.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3