Affiliation:
1. Department of Information and Communication Engineering, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 712-749, Republic of Korea
2. School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
Abstract
Biological schemes provide useful resources for designing adaptive routing protocols for wireless sensor networks (WSNs). The key idea behind using bioinspired routing is to find the optimal path to the destination. Similarly, the idea of opportunistic routing (OR) is to find the least number of hops to deliver the data to the destination. Numerous routing schemes have been proposed in WSNs while targeting various performance goals, such as throughput, delay, and link quality. Recently, OR schemes have come onto the scene in comparison with the traditional routing algorithms. The performance of OR schemes, however, highly depends on the selection of forwarder nodes. In this paper, we consider a chain network topology, where nodes are separated by an equal distance. The throughput of the chain network is analyzed mathematically, and based on the analysis results, a heuristic algorithm is proposed to choose the forwarder nodes. We evaluate the performance of the proposed Heuristic Approach to Select Opportunistic Routing Forwarders (HASORF) by using the ns-2 simulator and compare it with previous schemes, such as random routing, Extremely Opportunistic Routing (ExOR), and Simple Opportunistic Adaptive Routing (SOAR). The empirical results show that our proposed scheme achieves the best performance among them.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献