Reinforcement Learning with Probabilistic Boolean Network Models of Smart Grid Devices

Author:

Rivera Torres Pedro Juan12ORCID,Gershenson García Carlos134ORCID,Sánchez Puig María Fernanda15,Kanaan Izquierdo Samir26ORCID

Affiliation:

1. Centro de Ciencias de La Complejidad (C3), Universidad Nacional Autónoma de México, Circuito Mario de La Cueva S/N, Cd. Universitaria, Coyoacán 04510, Ciudad de México, Mexico

2. Bioinformatics and Biomedical Signals Laboratory, Centre de Recerca en Enginyeria Biomèdica, Universitat Politècnica de Catalunya, Facultat de Matemàtiques I Estadística, Edifici U, C/Pau Gargallo 5 08028, Barcelona, Spain

3. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico

4. Lakeside Labs GmbH, Klagenfurt Am Wörthersee, Austria

5. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N Coyoacán, 04510, Ciudad de México, Mexico

6. Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain

Abstract

The area of smart power grids needs to constantly improve its efficiency and resilience, to provide high quality electrical power in a resilient grid, while managing faults and avoiding failures. Achieving this requires high component reliability, adequate maintenance, and a studied failure occurrence. Correct system operation involves those activities and novel methodologies to detect, classify, and isolate faults and failures and model and simulate processes with predictive algorithms and analytics (using data analysis and asset condition to plan and perform activities). In this paper, we showcase the application of a complex-adaptive, self-organizing modeling method, and Probabilistic Boolean Networks (PBNs), as a way towards the understanding of the dynamics of smart grid devices, and to model and characterize their behavior. This work demonstrates that PBNs are equivalent to the standard Reinforcement Learning Cycle, in which the agent/model has an interaction with its environment and receives feedback from it in the form of a reward signal. Different reward structures were created to characterize preferred behavior. This information can be used to guide the PBN to avoid fault conditions and failures.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3