Hybrid Optimization Approach for Energy Control in Electric Vehicle Controller for Regulation of Three-Phase Induction Motors

Author:

Mehbodniya Abolfazl1,Kumar Parmod2,Changqing Xie3,Webber Julian L4ORCID,Mamodiya Udit5,Halifa Awal6ORCID,Srinivasulu Chennupalli7

Affiliation:

1. Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (KCST), Kuwait City, Kuwait

2. Department of Electronics and Information Engineering, Jiangxi University of Engineering, Xinyu, Jiangxi, China

3. School of Energy and Electromechanical Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan, China

4. Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan

5. Department of Electrical Engineering, Poornima College of Engineering, Jaipur, Rajasthan, India

6. Department of Electrical and Electronics Engineering, Tamale Technical University, Tamale, Ghana

7. Institute of Aeronautical Engineering, Hyderabad, Telangana, India

Abstract

Three-phase induction motors are becoming increasingly popular for electric cars and industrial uses because of their improved efficiency and simplicity of production, among other things. Many enterprises and industries use induction motors in several rotating applications. However, it is a difficult talent to master when it comes to controlling the speed of an induction motor for various purposes. This study examines the performance of a three-phase induction motor using approaches such as field-oriented control and direct torque control. This work utilized the fractional order Darwinian particle swarm optimization (FODPSO) method in fuzzy methodology to optimize a motor’s performance. Field-oriented control (FOC) and Direct torque control (DTC) methods are regulated by FODPSO, which is compared to standard FOC and DTC methods. MATLAB-Simulink was used to compare the outcomes of each system’s simulation model to determine which one performed the best. The support vector machine-direct torque control (SVM-DTC) technology is famous for its rapid dynamic response and decreased torque ripples. Using torque and settling time and rising time reduction, the suggested technique is proved to be superior to the present way.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3