The Multi-Field-Coupled Model and Optimization of Absorbing Material's Position and Size of Electronic Equipments

Author:

Duan B. Y.1,Qiao H.1,Zeng L. Z.1

Affiliation:

1. Research Institute on Mechatronics, Xidian University, Xi'an 710071, China

Abstract

There are three fields in electronic equipment such as structure deformation (S), temperature (T), and electromagnetic (EM) fields. Both deformation and temperature will affect the electromagnetic shielding performance of the equipment considerably, particularly in the case of enclosure with small volume and high packaging density. Because the position of electronic device and the shape of outlet will be changed with structural deformation, there must be therefore an adherent relationship among three fields. To begin with, this paper presents a three-field-coupled model called STEM. Then, to enhance the capability of electromagnetic shielding of the equipment, an efficient way is to attach absorbing material to the inside of it. Under the condition of pregiven material characteristics itself, the position and size of absorbing material are of significant effort on electromagnetic shielding. The optimization model based on STEM is developed in this paper. Next, the numerical and practical experiments of an actual enclosure are given to demonstrate the feasibility and validity of the model and methodology.

Publisher

Hindawi Limited

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EMC‐andIM‐based Optimum Design of Electronic Equipment;Electromechanical Coupling Theory, Methodology and Applications for High‐Performance Microwave Equipment;2022-11-18

2. Multifield Coupling Models of Four Kinds of Typical Electronic Equipment;Electromechanical Coupling Theory, Methodology and Applications for High‐Performance Microwave Equipment;2022-11-18

3. A Review on the Development of Spaceborne Membrane Antennas;Space: Science & Technology;2022-01

4. Multi-Field-Coupled Model and Solution of Active Electronically Scanned Array Antenna Based on Model Reconstruction;International Journal of Antennas and Propagation;2018-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3