An SDP Characteristic Information Fusion-Based CNN Vibration Fault Diagnosis Method

Author:

Zhu Xiaoxun1ORCID,Zhao Jianhong1ORCID,Hou Dongnan1,Han Zhonghe1ORCID

Affiliation:

1. School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China

Abstract

This study proposes a symmetrized dot pattern (SDP) characteristic information fusion-based convolutional neural network (CNN) fault diagnosis method to resolve issues of high complexity, nonlinearity, and instability in original rotor vibration signals. The method was used to conduct information fusion of real modal components of vibration signals and SDP image identification using CNN in order to achieve vibration fault diagnosis. Compared with other graphic processing methods, the proposed method more fully expressed the characteristics of different vibration signals and thus presented variations between different vibration states in a simpler and more intuitive way. The proposed method was experimentally investigated using simulation signals and rotor test-rig signals, and its validity and advancements were demonstrated using experimental analysis. By using CNN through deep learning to adaptively extract SDP characteristic information, vibration fault identification was ultimately realized.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3