Stochastic Risk Assessment with a Lagrangian Solution for the Optimal Cost Allocation in High-Speed Rail Networks

Author:

Zuo Jing12ORCID,Dang Jianwu3,Lyu Min4ORCID

Affiliation:

1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Lanzhou Dacheng Technology Company, Lanzhou, China

3. Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics & Image Processing, Lanzhou 730070, China

4. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China

Abstract

In large-scale high-speed rail networks (HSRNs), the occurrence of occasional malfunctions or accidents is unavoidable. The key issue considered in this study is the optimal allocation of the maintenance costs, based on the stochastic risk assessment for HSRNs. Inspired by the theoretical risk evaluation methods in the complex network, three major factors, including the local effects, global effects, and component self-effects are considered in the process of assessing the impact on the network components (nodes or lines). By introducing the component failure occurrence probability, which is considered to be an exponential function changing with the component maintenance costs, a feasible stochastic risk assessment model of the HSRNs together with the component impact assessment is proposed that can better unify the impact assessment of both the high-speed rail stations and railways. An optimal allocation algorithm based on a Lagrangian relaxation approach is designed. Correspondingly, the optimal cost allocation scheme can be determined using the algorithm to eliminate the various HSRN risks under the given costs. Furthermore, a real-world case study of the HSRNs in eastern China is illustrated. Compared with the genetic algorithm, the simulation shows that the approach can solve the optimal cost allocation problem to more effectively reduce the risks of large-scale HSRNs in practice.

Funder

National Social Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3