A Comparison of Metaheuristic Algorithms for Structural Optimization: Performance and Efficiency Analysis

Author:

Ghaemifard SaeedehORCID,Ghannadiasl AminORCID

Abstract

Optimization challenges effectively mirror numerous complex real‐world problems. These are typically addressed using two methodologies: approximate methods and exact methods. Within the approximate category, meta‐heuristic methods are prominent. These algorithms employ systematic principles to avoid local optima or prevent their occurrence altogether. The evolution of computing technology has spurred the development of various meta‐heuristic algorithms designed for precise and expedient resolution of optimization issues. This paper conducts a comparative analysis of meta‐heuristic algorithms applied to structural optimization. It encompasses 11 distinct meta‐heuristic optimization algorithms: atomic orbital search algorithm, chaos game optimization, energy valley optimizer, firefly algorithm, genetic algorithm, gray wolf optimization, harmony search, material generation algorithm, particle swarm optimization, social network search, and whale optimization algorithm. The efficacy of these algorithms is assessed through their application to structural problems such as trusses, cantilever‐cracked beams, welded beams, tubular columns, and I‐shaped beams. Evaluation criteria include computational efficiency, accuracy, and statistical analysis based on reports among the 50 iterations. The findings confirm the effectiveness of the algorithms, with particle swarm optimization and social network search frequently delivering superior results across most problem sets.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3