Optimization for Cavitation Inception Performance of Pump-Turbine in Pump Mode Based on Genetic Algorithm

Author:

Tao Ran1ORCID,Xiao Ruofu1ORCID,Yang Wei1,Wang Fujun1,Liu Weichao2

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. Dongfang Electric Machinery Co., Ltd., Deyang, Sichuan 618000, China

Abstract

Cavitation is a negative factor of hydraulic machinery because of its undesirable effects on the operation stability and safety. For reversible pump-turbines, the improvement of cavitation inception performance in pump mode is very important due to the strict requirements. The geometry of blade leading edge is crucial for the local flow separation which affects the scale and position of pressure drop. Hence, the optimization of leading edge shape is helpful for the improvement of cavitation inception performance. Based on the genetic algorithm, optimization under multiple flow rate conditions was conducted by modifying the leading edge ellipse ratio and blade thickness on the front 20% meanline. By using CFD simulation, optimization was completed with obvious improvements on the cavitation inception performance. CFD results show that the pressure drop location had moved downstream with the increasement of the minimum pressure coefficient. Experimental verifications also got an obvious enhancement of cavitation inception performance. The stability and safety was improved by moving the cavitation inception curve out of the operating range. This optimization is proved applicable and effective for the engineering applications of reversible pump-turbines.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3