Cloud Computing-Based Medical Health Monitoring IoT System Design

Author:

Cao Shihua1ORCID,Lin Xin2,Hu Keyong1ORCID,Wang Lidong1ORCID,Li Wenjuan1ORCID,Wang Mengxin3,Le Yuchao3

Affiliation:

1. Department of Nursing, Hangzhou Normal University Qianjiang College, Hangzhou, Zhejiang 310036, China

2. Bengbu 3rd Hospital, Bengbu, Anhui 233000, China

3. School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China

Abstract

With the continuous improvement of the national medical system, health monitoring combined with cloud computing and Internet of Things has become a concern. This study mainly discusses the design of the medical health monitoring IoT system based on cloud computing. From the user to the health service provider, there are three devices: sensor terminal, gateway terminal, and service platform. The sensor terminal is used to measure physiological indicators, such as blood pressure, electrocardiogram, blood oxygen saturation, heart rate, and other physiological indicators; the gateway terminal is used to link the sensor terminal to receive physiological indicators and forward them to the business platform; the gateway is also used to receive health information and other instructions issued by the server. In the community service mode, users can be divided into groups according to the community and region, and the corresponding service doctors and agent customer service personnel (nurses) can be assigned. Users can collect personal physiological indicators at home or outside through the medical terminal. These indicators and information are transmitted to the background health platform system through the mobile GSM-TD communication network. Users can also view their own historical health records and opinions of health consultants through the web/WAP website. Through the integration ability of the health cloud platform, relying on the interconnection with HIS, LIS, and other information systems of professional medical institutions, we jointly operate special value-added services, such as appointment registration, maternal and child healthcare, and medical communication (doctor-patient interaction), so that users can enjoy the remote service and guidance of professional medical institutions by subscribing to health value-added services. The CPU utilization rate is 40%, the internal utilization rate is 7.44 G, the memory utilization rate is 11.8%, and the network bandwidth is 591.87 M. During the whole test process, the indicators are stable, and there are no restart, crash, and other phenomena, so the system performance meets the design requirements.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3