Affiliation:
1. Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
2. Departamento de Bioprocesos, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico
3. Departamento de Medicina Nuclear, Instituto Nacional de Cancerología, Ciudad de México 14000, Mexico
Abstract
Previously, we reported the preparation and preclinical studies of 99mTc-labeled gold nanoparticles-mannose (99mTc-AuNP-mannose) with potential for sentinel lymph node (SLN) detection by using nuclear medicine procedures. This study aimed to evaluate the biokinetics and hybrid (2D/3D) dosimetry of 99mTc-AuNP-mannose in five patients with breast cancer under a sentinel lymph node detection protocol. Anterior and posterior whole-body planar images (2D, at 0.5, 2, 6, and 24 h) and single-photon emission computed tomography (3D at 6.5 h)/computed tomography (SPECT/CT) images were acquired after 99mTc-AuNP-mannose administration (37 MBq). Through a hybrid quantification method, activity in tissues of interest at the different acquisition times was determined and integrated over time to obtain the total nuclear transformations (N), as well as the mean residence time, in each tissue. N values and the OLINDA code were used for estimating the internal radiation absorbed doses. Results demonstrated that 99mTc-AuNP-mannose successfully accumulates and remains up to 24 h in the sentinel lymph node without detectable migration to other lymph nodes and no side effects on patients. Negligible absorption of the radiolabeled nanoparticles into the circulatory system was observed, from which the radio-nanosystem is rapidly eliminated by kidneys. Hybrid (2D/3D) dosimetry evaluations showed equivalent doses to SLN, breast, and kidneys of 172.34, 5.32, and 0.08 mSv/37 MBq, respectively, with an effective dose of 2.05E − 03 mSv/MBq. The mean effective residence time in SLN was 0.92 h. This preliminary study indicates that the use of 99mTc-AuNP-mannose for successful SLN detection in patients is safe, producing an effective dose at the level recommended for diagnostic studies (<10 mSv).
Funder
Consejo Nacional de Ciencia y Tecnología
Subject
Radiology, Nuclear Medicine and imaging
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献