Image-Based Arabic Sign Language Recognition System Using Transfer Deep Learning Models

Author:

Bani Baker Qanita1ORCID,Alqudah Nour1,Alsmadi Tibra1,Awawdeh Rasha1

Affiliation:

1. Department of Computer Science, Jordan University of Science and Technology, Irbid, Jordan

Abstract

Sign language is a unique communication tool helping to bridge the gap between people with hearing impairments and the general public. It holds paramount importance for various communities, as it allows individuals with hearing difficulties to communicate effectively. In sign languages, there are numerous signs, each characterized by differences in hand shapes, hand positions, motions, facial expressions, and body parts used to convey specific meanings. The complexity of visual sign language recognition poses a significant challenge in the computer vision research area. This study presents an Arabic Sign Language recognition (ArSL) system that utilizes convolutional neural networks (CNNs) and several transfer learning models to automatically and accurately identify Arabic Sign Language characters. The dataset used for this study comprises 54,049 images of ArSL letters. The results of this research indicate that InceptionV3 outperformed other pretrained models, achieving a remarkable 100% accuracy score and a 0.00 loss score without overfitting. These impressive performance measures highlight the distinct capabilities of InceptionV3 in recognizing Arabic characters and underscore its robustness against overfitting. This enhances its potential for future research in the field of Arabic Sign Language recognition.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3