C1QC, VSIG4, and CFD as Potential Peripheral Blood Biomarkers in Atrial Fibrillation-Related Cardioembolic Stroke

Author:

Ding Qian1ORCID,Xing Juan2ORCID,Bai Fanghui2ORCID,Shao Wei1ORCID,Hou Kaiqi1ORCID,Zhang Shoudu1ORCID,Hu Yuanzheng1ORCID,Zhang Baochao2ORCID,Zhao Hui3ORCID,Xu Qian13ORCID

Affiliation:

1. Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China

2. Henan Provincial Key Laboratory of Stroke Prevention and Treatment. Nanyang central Hospital, Nanyang, China

3. Zhengzhou Revogene Lnc, Zhengzhou, China

Abstract

Atrial fibrillation (AF) is a major risk factor for ischemic stroke. We aimed to identify novel potential biomarkers with diagnostic value in patients with atrial fibrillation-related cardioembolic stroke (AF-CE).Publicly available gene expression profiles related to AF, cardioembolic stroke (CE), and large artery atherosclerosis (LAA) were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified and then functionally annotated. The support vector machine recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic AF-CE biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the ROC curve (AUC). In order to verify the predictive results, the blood samples of 13 healthy controls, 20 patients with CE, and 20 patients with LAA stroke were acquired for RT-qPCR, and the correlation between biomarkers and clinical features was further explored. Lastly, a nomogram and the companion website were developed to predict the CE-risk rate. Three feature genes (C1QC, VSIG4, and CFD) were selected and validated in the training and the external datasets. The qRT-PCR evaluation showed that the levels of blood biomarkers (C1QC, VSIG4, and CFD) in patients with AF-CE can be used to differentiate patients with AF-CE from normal controls ( P < 0.05 ) and can effectively discriminate AF-CE from LAA stroke ( P < 0.05 ). Immune cell infiltration analysis revealed that three feature genes were correlated with immune system such as neutrophils. Clinical impact curve, calibration curves, ROC, and DCAs of the nomogram indicate that the nomogram had good performance. Our findings showed that C1QC, VSIG4, and CFD can potentially serve as diagnostic blood biomarkers of AF-CE; novel nomogram and the companion website can help clinicians to identify high-risk individuals, thus helping to guide treatment decisions for stroke patients.

Funder

Specialized Science and Technology Key Project of Henan Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3