Affiliation:
1. The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, China
2. The First Affiliated Hospital of Wenzhou Medical University, WenzhouZhejiang 325000, China
Abstract
Background. Primary osseous spinal neoplasms (POSNs) are the rarest tumor type in the spine. Very few studies have presented data on elderly patients with POSNs specifically. The present study was aimed at exploring the prognostic factors and developing two web-based nomograms to predict overall survival (OS) and cancer-specific survival (CSS) for this population. Method. The data of elderly patients with POSNs was extracted from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015. Cox regression analyses were performed to determine independent prognostic factors for OS and CSS, these prognostic factors were incorporated to establish nomograms. The discrimination of the nomograms was evaluated by the receiver operating characteristic (ROC) curve and the value of area under the curve (AUC). Calibration curve was plotted to assess the predictive accuracy of model. Decision curve analysis (DCA) was conducted to determine the net clinical benefit. Furthermore, two web-based survival rate calculators were developed. Result. A total of 430 patients were finally selected into this study and were randomly assigned to the training set (302 cases) and validation set (128 cases). Of these, 289 patients were further considered for the analysis of CSS and were randomized into training set (205 cases) and validation set (84 cases). Based on the results of univariate and multivariate Cox analyses, variables that significantly correlated with survival outcomes were used to establish nomograms for OS and CSS prediction. Two established nomograms demonstrated good predictive performance. In the training set, the AUCs of the nomogram for predicting 12-, 24-, and 36-month OS were 0.849, 0.903, and 0.889, respectively, and those for predicting 12-, 24-, and 36-month CSS were 0.890, 0.880, and 0.881, respectively. Two web-based survival rate calculators were developed to estimate OS (https://research1.shinyapps.io/DynNomappOS/) and CSS (https://research1.shinyapps.io/DynNomappCSS/). Conclusion. Novel nomograms based on identified clinicopathological factors were developed and can be used as a tool for clinicians to predict OS and CSS in elderly patients with POSNs. These models could help facilitate a personalized survival evaluation for this population.
Funder
China, Jilin Science and Technology Program