Nanomaterial Exposure Induced Neutrophil Extracellular Traps: A New Target in Inflammation and Innate Immunity

Author:

Yang Hang1ORCID,Marion Tony N.12,Liu Yi1ORCID,Zhang Lingshu1,Cao Xue1,Hu Huifang1,Zhao Yi1ORCID,Herrmann Martin3ORCID

Affiliation:

1. Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

2. Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA

3. Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany

Abstract

Nanotechnology has become a novel subject with impact in many research and technology areas. Nanoparticles (NPs), as a key component in nanotechnology, are widely used in many areas such as optical, magnetic, electrical, and mechanical engineering. The biomedical and pharmaceutical industries have embraced NPs as a viable drug delivery modality. As such, the potential for NP-induced cytotoxicity has emerged as a major concern for NP drug delivery systems. Thus, it is important to understand how NPs affect the innate immune system. As the most abundant myeloid cell type in innate immune responses, neutrophils are critical for concerns about potentially toxic side effects of NPs. When activated by innate immune stimuli, neutrophils may initiate NETosis to release neutrophil extracellular traps (NETs). Herein, we have reviewed the relationship between NPs and the induction of NETosis and release of NETs.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3