Architectures and Arithmetic for Low Static Power Consumption in Nanoscale CMOS

Author:

Nilsson Peter1

Affiliation:

1. Department of Electrical and Information Technology, Faculty of Engineering, Lund University, Box 118, 22100 Lund, Sweden

Abstract

This paper focuses on leakage reduction at architecture and arithmetic level. A methodology for considerable reduction of the static power consumption is shown. Simulations are done in a typical 130 nm CMOS technology. Based on the simulation results, the static power consumption is estimated and compared for different filter architectures. Substantial power reductions are shown in both FIR-filters and IIR-filters. Three different types of architectures, namely, bit-parallel, digit-serial, and bit-serial structures are used to demonstrate the methodology. The paper also shows that the relative power ratio is strongly dependent on the used word length; that is, the gain in power ratio is larger for longer word lengths. A static power ratio at 0.48 is shown for the bit-serial FIR-filter and a power ratio at 0.11 is shown in the arithmetic part of the FIR-filter. The static power ratio in the IIR-filter is 0.36 in the bit-serial filter and 0.06 in the arithmetic part of the filter. It is also shown that the use of storage, such as registers, relatively the arithmetic part, affects the power ratio. The relatively lower power consumption in the IIR-filter compared to the FIR-filter is due to the lower use of registers.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Analog Circuits and Signal Processing;2013-08-19

2. Current Waveforms for Neural Stimulation-Charge Delivery With Reduced Maximum Electrode Voltage;IEEE Transactions on Biomedical Engineering;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3