Effects of Geometric Sound on Brainwave Activity Patterns, Autonomic Nervous System Markers, Emotional Response, and Faraday Wave Pattern Morphology

Author:

Geffen Rona1ORCID,Braun Christoph234ORCID

Affiliation:

1. Independent Scholar, Athens, Greece

2. Tübingen University, MEG-Center, Tübingen 72074, Germany

3. HIH Hertie Institute for Clinical Brain Research, Tübingen, Germany

4. CIMeC Center for Mind/Brain Sciences, University of Trento, Trento, Italy

Abstract

This study introduces Geometric Sound as a subfield of spatial sound featuring audio stimuli which are sonic holograms of mathematically defined 3D shapes. The effects of Geometric Sound on human physiology were investigated through EEG, heart rate, blood pressure, and a combination of questionnaires monitoring 50 healthy participants in two separate experiments. The impact of Geometric Sound on Faraday wave pattern morphology was further studied. The shapes examined, pyramid, cube, and sphere, exhibited varying significant effects on autonomic nervous system markers, brainwave power amplitude, topology, and connectivity patterns, in comparison to both the control (traditional stereo), and recorded baseline where no sound was presented. Brain activity in the Alpha band exhibited the most significant results, additional noteworthy results were observed across analysis paradigms in all frequency bands. Geometric Sound was found to significantly reduce heart rate and blood pressure and enhance relaxation and general well-being. Changes in EEG, heart rate, and blood pressure were primarily shape-dependent, and to a lesser extent sex-dependent. Pyramid Geometric Sound yielded the most significant results in most analysis paradigms. Faraday Waves patterns morphology analysis indicated that identical frequencies result in patterns that correlate with the excitation Geometric Sound shape. We suggest that Geometric Sound shows promise as a noninvasive therapeutic approach for physical and psychological conditions, stress-related disorders, depression, anxiety, and neurotrauma. Further research is warranted to elucidate underlying mechanisms and expand its applications.

Publisher

Hindawi Limited

Reference156 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3