Adaptive Neural Network Variable Structure Control for Liquid-Filled Spacecraft under Unknown Input Saturation

Author:

Wang Hongwei1,Lu Shufeng2,Song Xiaojuan1ORCID

Affiliation:

1. College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

2. Department of Mechanics, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

This study addresses the problem of attitude maneuver control for a three-axis stabilized liquid-filled spacecraft using an adaptive neural network variable structure control algorithm in the presence of parametric uncertainty, external disturbances, and control input saturation. The liquid fuel is equivalent to a spherical pendulum model, and the coupled dynamic model of liquid-filled spacecraft is derived using the conservation law of angular momentum moment. Then, adaptive variable structure control technique is designed, which contains hyperbolic tangent function that preserves control smoothness at all times. The proposed control algorithm has the properties that state variables converge to the origin asymptotically under parametric uncertainty and external disturbance. Furthermore, the controller derived here is extended by adding a feed-forward saturation compensation scheme to reduce the influence of unknown control input saturation on the system. Also, the saturation compensation scheme is derived by using a radial basis function neural network to approximate the unknown saturation nonlinearity. The associated stability proof of the resulting closed-loop system is presented based on Lyapunov analysis, and asymptotic convergence of the state variables is guaranteed via the Barbalat lemma. Numerical simulations are presented to illustrate the spacecraft performance obtained by using the proposed controllers.

Funder

Natural Science Foundation of Inner Mongolia

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning algorithms usage for satellites simulation and control;2021 22nd International Conference on Computational Problems of Electrical Engineering (CPEE);2021-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3