CPEH: A Clustering Protocol for the Energy Harvesting Wireless Sensor Networks

Author:

Han Yu1ORCID,Su Jian2ORCID,Wen Guangjun1ORCID,He Yiran1ORCID,Li Jian1ORCID

Affiliation:

1. University of Electronic Science and Technology of China, 611731, China

2. Nanjing University of Information Science & Technology, 210044, China

Abstract

In the last decade, energy harvesting wireless sensor network (EHWSN) has been well developed. By harvesting energy from the surrounding environment, sensors in EHWSN remove the energy constraint and have an unlimited lifetime in theory. The long-lasting character makes EHWSN suitable for Industry 4.0 applications that usually need sensors to monitor the machine state and detect errors continuously. Most wireless sensor network protocols have become inefficient in EHWSN due to neglecting the energy harvesting property. In this paper, we propose CPEH, which is a clustering protocol specially designed for the EHWSN. CPEH considers the diversity of the energy harvesting ability among sensors in both cluster formation and intercluster communication. It takes the node’s information such as local energy state, local density, and remote degree into account and uses fuzzy logic to conduct the cluster head selection and cluster size allocation. Meanwhile, the Ant Colony Optimization (ACO) as a reinforcement learning strategy is utilized by CPEH to discover a highly efficient intercluster routing between cluster heads and the base station. Furthermore, to avoid cluster dormancy, CPEH introduces the Cluster Head Relay (CHR) strategy to allow the proper cluster member to undertake the cluster head that is energy depletion. We make a detailed simulation of CPEH with some famous clustering protocols under different network scenarios. The result shows that CPEH can effectively improve the network throughput and delivery ratio than others as well as successfully solve the cluster dormancy problem.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3