The Hermitian Kirchhoff Index and Robustness of Mixed Graph

Author:

Lin Wei1ORCID,Zhou Shuming23ORCID,Li Min23ORCID,Chen Gaolin23ORCID,Zhou Qianru23ORCID

Affiliation:

1. Concord University College, Fujian Normal University, Fuzhou, Fujian 350117, China

2. College of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian 350117, China

3. Center for Applied Mathematics of Fujian Province, Fujian Normal University, Fuzhou, Fujian 350117, China

Abstract

Large-scale social graph data poses significant challenges for social analytic tools to monitor and analyze social networks. The information-theoretic distance measure, namely, resistance distance, is a vital parameter for ranking influential nodes or community detection. The superiority of resistance distance and Kirchhoff index is that it can reflect the global properties of the graph fairly, and they are widely used in assessment of graph connectivity and robustness. There are various measures of network criticality which have been investigated for underlying networks, while little is known about the corresponding metrics for mixed networks. In this paper, we propose the positive walk algorithm to construct the Hermitian matrix for the mixed graph and then introduce the Hermitian resistance matrix and the Hermitian Kirchhoff index which are based on the eigenvalues and eigenvectors of the Hermitian Laplacian matrix. Meanwhile, we also propose a modified algorithm, the directed traversal algorithm, to select the edges whose removal will maximize the Hermitian Kirchhoff index in the general mixed graph. Finally, we compare the results with the algebraic connectivity to verify the superiority of the proposed strategy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3