An Effective Charger for Plug-In Hybrid Electric Vehicles (PHEV) with an Enhanced PFC Rectifier and ZVS-ZCS DC/DC High-Frequency Converter

Author:

Kanimozhi G.1ORCID,Natrayan L.2ORCID,Angalaeswari S.3ORCID,Paramasivam Prabhu4ORCID

Affiliation:

1. Centre for Smart Grid Technologies, School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India

3. School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India

4. Department of Mechanical Engineering, College of Engineering and Technology, Mettu University, Metu 318, Ethiopia

Abstract

A plug-in hybrid electric vehicles (PHEV) charger adapter consists of an AC/DC power factor correction (PFC) circuit accompanied by a full-bridge isolated DC/DC converter. This paper introduces an efficient two-stage charger topology with an improved PFC rectifier as front-end and a high-frequency zero voltage switching (ZVS). Current switching (ZCS) DC/DC converter is the second part. The front-end converter is chosen as bridgeless interleaved (BLIL) boost converter, as it provides the advantages like lessened input current ripple, capacitor voltage ripple, and electromagnetic interference. Resettable integrator (RI) control technique is employed for PFC and DC voltage regulation. The controller achieves nonlinear switching converter control and makes it more resilient with the faster transient response and input noise rejection. The second stage incorporates a resonant circuit, which helps in achieving ZVS/ZCS for inverter switches and rectifier diodes. PI controller with phase shift modulator is used for second-stage converter. It improves the overall efficacy of the charger by lowering the switching losses, lowering the voltage stress on the power semiconductor devices, and reversing recovery losses of the diodes. The simulations and experimental results infer that the overall charging efficiency increases to 96.5%, which is 3% higher than the conventional two-stage approach using the interleaved converter.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Simulation-Driven Metaheuristic Algorithms;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Optimizing Optical Fiber Path in Wavelength Division Multiplexing Networks Using Particle Swarm Optimization;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

3. Meta-Heuristic Optimization for Enhanced Sensor-Based Health Monitoring in Cloud Computing Environments;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

4. Machine Learning in Industrial IoT Applications for Safety, Security, Asset Localization, Quality Assurance, and Sustainability in Smart Production;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

5. Experimental Investigation and Comparative Analysis of an Efficient Machine Learning Algorithm for Distribution System Reconfiguration;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3