Seismological and Hydrogeological Controls on New Zealand-Wide Groundwater Level Changes Induced by the 2016 Mw7.8 Kaikōura Earthquake

Author:

Weaver K. C.1ORCID,Cox S. C.2ORCID,Townend J.1ORCID,Rutter H.3ORCID,Hamling I. J.4ORCID,Holden C.4ORCID

Affiliation:

1. School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

2. GNS Science, Private Bag 1930, Dunedin, New Zealand

3. Aqualinc Research Ltd., Christchurch, New Zealand

4. GNS Science, PO Box 30368, Lower Hutt, Wellington, New Zealand

Abstract

The 2016 Mw7.8 Kaikōura earthquake induced groundwater level changes throughout New Zealand. Water level changes were recorded at 433 sites in compositionally diverse, young, shallow aquifers, at distances of between 4 and 850 km from the earthquake epicentre. Water level changes are inconsistent with static stress changes but do correlate with peak ground acceleration (PGA). At PGAs exceeding ~2 m/s2, water level changes were predominantly persistent increases. At lower PGAs, there were approximately equal numbers of persistent water level increases and decreases. Shear-induced consolidation is interpreted to be the predominant mechanism causing groundwater changes at accelerations exceeding ~2 m/s2, whereas permeability enhancement is interpreted to predominate at lower levels of ground acceleration. Water level changes occur more frequently north of the epicentre, as a result of the fault’s northward rupture and resulting directivity effects. Local hydrogeological conditions also contributed to the observed responses, with larger water level changes occurring in deeper wells and in well-consolidated rocks at equivalent PGA levels.

Funder

Royal Society of New Zealand Marsden Fund

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3