An Indole Alkaloid Extracted from Evodia rutaecarpa Inhibits Colonic Motility of Rats In Vitro

Author:

Wang Guo-xiang1,Xiang Yan-li1,Wang Hong-gang1,Miu Yang-de1,Yu Guang1ORCID

Affiliation:

1. Department of Gastroenterology, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China

Abstract

Evodiamine (Evo) is an indole alkaloid extracted from the traditional Chinese medicinal herb Evodia rutaecarpa. Evo may regulate gastrointestinal motility, but the evidence is insufficient, and the mechanisms remain unknown. The aim of this study was to investigate the effect of Evo on colonic motility of rats and the underlying mechanisms in vitro. Rat colonic muscle was exposed to Evo (10 and 100 μM) followed by immunohistochemistry of cholecystokinin receptor 1 (CCK1R). Muscle contractions were studied in an organ bath system to determine whether CCK1R, nitric oxide (NO), and enteric neurons are involved in the relaxant effect of Evo. Whole-cell patch-clamp was used to detect L-type calcium currents (ICa,L) in isolated colonic smooth muscle cells (SMCs). CCK1R was observed in SMCs, intermuscular neurons, and mucosa of rat colon. Evo could inhibit spontaneous muscle contractions; NO synthase, inhibitor L-NAME CCK1R antagonist, could partly block this effect, while the enteric neurons may not play a major role. Evo inhibited the peak ICa,L in colonic SMCs at a membrane potential of 0 mV. The current-voltage (I–V) relationship of L-type calcium channels was modified by Evo, while the peak of the I–V curve remained at 0 mV. Furthermore, Evo inhibited the activation of L-type calcium channels and decreased the peak ICa,L. The relaxant effect of Evo on colonic muscle is associated with the inhibition of L-type calcium channels. The enteric neurons, NO, and CCK1R may be partly related to the inhibitory effect of Evo on colonic motility. This study provides the first evidence that evodiamine can regulate colonic motility in rats by mediating calcium homeostasis in smooth muscle cells. These data form a theoretical basis for the clinical application of evodiamine for treatment of gastrointestinal motility diseases.

Funder

Science and Technology Planning Projects of Taizhou

Publisher

Hindawi Limited

Subject

Gastroenterology,Hepatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3