Synthesis of Spherical Copper Oxide Nanoparticles by Chemical Precipitation Method and Investigation of Their Photocatalytic and Antibacterial Activities

Author:

Nahar Bodrun1ORCID,Chaity Shakira Billah2,Gafur Md. Abdul2ORCID,Hossain Muhammad Zamir1ORCID

Affiliation:

1. Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh

2. Pilot Plant and Process Development Center, BCSIR, Dhaka 1205, Bangladesh

Abstract

Methylene blue (MB) dye and Staphylococcus aureus (S. aureus) bacteria in wastewater are the two significant problems currently. Researchers have been looking for materials that can combat these two problems at the same time. In the present study, we describe the synthesis of spherical copper oxide (CuO) nanoparticles (NPs) by the chemical precipitation method and evaluate their photocatalytic performance against MB dye and antibacterial efficacy against S. aureus. CuO NPs were produced using copper acetate monohydrate (Cu(CH3COO)2·H2O) as the precursor and sodium hydroxide (NaOH) as the reducing agent. Synthesized CuO NPs were characterized using a combination of techniques, including ultraviolet–visible spectroscopy, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, Fourier transform infrared, and energy-dispersive X-ray diffraction analysis. All the analyses indicated that monoclinic CuO NPs were formed with a spherical shape and an average particle size of 6.2 nm. Photocatalytic experiments indicated that 55.5% of a 10 ppm MB dye solution was degraded by the prepared nano-CuO photocatalyst only after 60 min. Additionally, synthesized CuO NPs demonstrated, to some extent, the zone of inhibition on the S. aureus bacterium’s cell wall. It is inspiring that CuO NPs can be used to solve two problems of MB dye contamination and S. aureus bacterial infection simultaneously.

Funder

Jagannath University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3