Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method

Author:

Abir Wahidul Hasan1ORCID,Uddin Md. Fahim1ORCID,Khanam Faria Rahman1ORCID,Tazin Tahia1,Khan Mohammad Monirujjaman1ORCID,Masud Mehedi2ORCID,Aljahdali Sultan2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka-1229, Bangladesh

2. Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia

Abstract

White blood cells (WBCs) are blood cells that fight infections and diseases as a part of the immune system. They are also known as “defender cells.” But the imbalance in the number of WBCs in the blood can be hazardous. Leukemia is the most common blood cancer caused by an overabundance of WBCs in the immune system. Acute lymphocytic leukemia (ALL) usually occurs when the bone marrow creates many immature WBCs that destroy healthy cells. People of all ages, including children and adolescents, can be affected by ALL. The rapid proliferation of atypical lymphocyte cells can cause a reduction in new blood cells and increase the chances of death in patients. Therefore, early and precise cancer detection can help with better therapy and a higher survival probability in the case of leukemia. However, diagnosing ALL is time-consuming and complicated, and manual analysis is expensive, with subjective and error-prone outcomes. Thus, detecting normal and malignant cells reliably and accurately is crucial. For this reason, automatic detection using computer-aided diagnostic models can help doctors effectively detect early leukemia. The entire approach may be automated using image processing techniques, reducing physicians’ workload and increasing diagnosis accuracy. The impact of deep learning (DL) on medical research has recently proven quite beneficial, offering new avenues and possibilities in the healthcare domain for diagnostic techniques. However, to make that happen soon in DL, the entire community must overcome the explainability limit. Because of the black box operation’s shortcomings in artificial intelligence (AI) models’ decisions, there is a lack of liability and trust in the outcomes. But explainable artificial intelligence (XAI) can solve this problem by interpreting the predictions of AI systems. This study emphasizes leukemia, specifically ALL. The proposed strategy recognizes acute lymphoblastic leukemia as an automated procedure that applies different transfer learning models to classify ALL. Hence, using local interpretable model-agnostic explanations (LIME) to assure validity and reliability, this method also explains the cause of a specific classification. The proposed method achieved 98.38% accuracy with the InceptionV3 model. Experimental results were found between different transfer learning methods, including ResNet101V2, VGG19, and InceptionResNetV2, later verified with the LIME algorithm for XAI, where the proposed method performed the best. The obtained results and their reliability demonstrate that it can be preferred in identifying ALL, which will assist medical examiners.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3