Train-Bridge Dynamic Behaviour of Long-Span Asymmetrical-Stiffness Cable-Stayed Bridge

Author:

Wu Yuexing1ORCID,Zhou Jianting1ORCID,Zhang Jinquan2,Wen Qiang1,Li Xuan1

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing, China

2. Research Institute of Highway, Ministry of Transport, Beijing, China

Abstract

Long-span cable-stayed bridge (LCB) with unequal-height towers is being designed and constructed in metro lines due to its better adaptability to environment and terrain conditions compared to traditional cable-stayed bridge with equal-height towers. However, the asymmetrical arrangement of towers leads to obvious nonuniformity of the structural stiffness along the longitudinal direction, which intensifies the wheel-rail coupled vibration behaviour, and affects the running safety of operating trains and ride comfort. Therefore, train-bridge dynamic behaviour of long-span asymmetrical-stiffness cable-stayed bridge is deeply investigated in this work. Primarily, considering the comprehensive index of frequency difference and modal assurance criterion (MAC), a nonlinear model updating technique (NMUT) based on penalty function theory is proposed, which can be used to optimize the bridge numerical model. Secondly, on the basis of the train-track-bridge dynamic interaction theory (TDIT), a train-track-bridge coupled dynamic model (TCDM) is established. Finally, a LCB with unequal-height towers is applied as a case to illustrate the influence of asymmetrical stiffness on the train-track-bridge dynamic characteristics. Results show that the proposed NMUT is efficacious and practical. For the LCB with unequal-height towers, a significant difference between the bridge vibration at low tower location and that at high tower location appears. The vertical displacement difference of the main beam on both sides of the bridge increases with the distance from the observation point to the bridge tower increasing. The variation of acceleration difference on both sides of the bridge is influenced by the speed of the train and the position of the observation point simultaneously. In general, vibrations of the main beam at low tower location are larger than those at high tower location.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3