AI-Assisted Failure Location Platform for Optical Network

Author:

Liu Pengcheng1ORCID,Ji Wei1ORCID,Liu Qiang1ORCID,Xue Xuwei2ORCID

Affiliation:

1. School of Information Science and Engineering, ShanDong University, Qingdao 266237, China

2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

In the paper, we applied the customized AI module to the OTDR device and, combined with the optical power monitoring module, realized the AI-assisted optical network fault location mechanism for the high-density interconnection scenario of data centers. The mechanism can make full use of the data from optical links. Based on the link data, the AI module can predict the links that may fail, and then the target links will be monitored by the optical power module. The mechanism can quickly locate and respond to faulty links. Through the test, the introduction of an AI model can improve the average fault detection efficiency of the link by 98.41%.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Fault Warning Technology of Optical Network Based on Recurrent Neural Network;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

2. On Explaining and Reasoning About Optical Fiber Link Problems;Communications in Computer and Information Science;2024

3. Research on Fault Location and Detection Technology of Optical Network Based on Long Short-Term Memory Neural Network;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

4. Correlation optical time domain reflectometry based on broadband random optoelectronic oscillator;Optics & Laser Technology;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3