Failure and Acoustic Emissions of Coal–Rock Combinations with Different Dip Angles in the Shaqu No. 1 Coal Mine

Author:

Fu Yuping12,He Yongliang12ORCID,Li Chuantian12

Affiliation:

1. School of Engineering for Safety and Emergency Management, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. Intelligent Monitoring and Control of Coal Mine Dust Key Laboratory of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China

Abstract

The force and deformation characteristics of the rock layer on the top and bottom of the coal seam change significantly when the dip angle changes. The mechanical properties and damage characteristics of differently inclined coal–rock assemblages were investigated, and the results were combined with acoustic emission information, including acoustic emission ringdown counts, to quantify the damage of inclined coal–rocks under compression. The experimental results showed that the stress‒strain curves of the inclined coal–rock assemblages had four main stages, with approximately similar curves in the early stage and deformation in the later stage. The damage gradually changed from shear damage to interfacial slip damage, and the damage area gradually transitioned to the structural surface from coal body components. The cumulative acoustic emission energy tended to decrease with increasing inclination angle, and the peak acoustic emission energy gradually decreased. When the inclination angle was less than 30°, the cumulative energy of acoustic emissions increased slowly, then decreased, and it finally decreased significantly between 30° and 45°; from 0° → 15° → 30° → 45°, the energy change rates were +3.0%, −25.1%, and −78.2%, respectively. For coal–rock assemblages with different interfacial angles, the sliding damage instability caused by the coal–rock interface increased with increasing interfacial angle within the assemblage. The results of this study provide a deeper understanding of the mechanical properties of coal–rock assemblages with different inclinations and the characteristics of fissure extension. The fractal dimension based on particle number decreased with increasing loading rate, and the larger the loading rate was, the smaller the fractal dimension. In addition, the current findings provide a reliable foundation for further understanding the mechanisms of disasters caused by coal–rock disturbances, such as excavation of inclined roadways and extraction of gas, as well as supporting the development of methods for monitoring, early warning, and prevention and control of these types of disasters.

Funder

Fundamental Research Program of Shanxi Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3