Industrial Chain Disruption Events Monitoring with Deep Learning Methods: A Practical Application in China

Author:

Tang Huimin1ORCID,Yuan Yuan1ORCID,Gong Tianxiao1ORCID

Affiliation:

1. Research Institute of Informatization and Industrialization Integration, China Academy of Information and Communications Technology, Beijing 100191, China

Abstract

Globalization has made the industrial chain longer and more complex, resulting in greater vulnerability to emergencies, such as the COVID-19 pandemic, earthquakes, and wars. Emergencies will lead to plant shutdowns, supply shortages, market blockades, and other risk events, leading to large-scale supply chain disruption, also known as industrial chain disruption. The safety and stability of the industrial chain are the foundation of national economic stability. All countries attach great importance to risk monitoring leading to the interruption of the industrial chain. However, at present, the risk monitoring method of the industrial chain is mainly to screen out the risk events that may cause the industrial chain disruption from news by manually monitoring the news media. It is of great significance to establish an efficient automatic monitoring system for industrial chain disruption events (ICDE). In this paper, an ICDE monitoring model is proposed to identify ICDE automatically using deep learning technology. The ICDE monitoring model consists of an ICDE identification model and an ICDE correlation model. The former identifies risk events from online news through the Ernie model, while the latter matches risk events with industrial chain nodes through similar nodes and virtual nodes. Similar nodes refer to synonyms in industrial chain nodes. Virtual nodes refer to the words that appear in a large number in the news and do not exist in the industrial chain, but they form an inclusive relationship with the nodes of the industrial chain. Finally, the model is applied to the new energy vehicle industry chain as an example. The application results show that the model can monitor ICDE on each node of the industry chain in real time, and the identification accuracy of ICDE is 92%. Through the ICDE monitoring model, the national or local government can formulate measures to reduce industrial losses in time and track the risk status of the industrial chain in real time.

Funder

Youth Project of the China Academy of Information and Communications Technology

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3