Optimal Sizing and Management of Hybrid Wind Turbine-Diesel-Battery System for Reverse Osmosis Seawater Desalination in NEOM City

Author:

Hassan Mohamed K.1ORCID,Rezk Hegazy2,Youssef Hamdy1,Shehata Ahmed S.3,El-Bary Alaa A.4ORCID,Al-Quraan Ayman5ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia

2. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia

3. Marine Engineering Department, College of Engineering and Technology, Arab Academy for Science Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt

4. Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt

5. Electrical Power Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan

Abstract

Optimal sizing and management of hybrid wind turbine-diesel-battery system for reverse osmosis seawater desalination in NEOM city is the objective of the paper. Therefore, the paper explored the different factors to optimize and introduce a technoeconomic evaluation and energy management of a stand-alone wind turbine (WT) system, diesel generator (DG), and battery storage (BS). The suggested WT/DG/BS system is implemented to feed seawater reverse osmosis (SWRO) unit in NEOM. The necessitated desalinated water per day is 100 m3. To determine the optimal size of WT/DG/BS corresponding to the minimum cost of energy (COE) and net present cost, two different ratings of the SWRO units (SWRO-100 and SWRO-150), three control dispatch strategies (load following, cycle charging, and combined dispatch), and five types of batteries are considered. HOMER software is performed to simulate and optimize the WT/DG/BS. The optimization results indicated that the best battery storage is the Trojan SAGM battery. In this case, the COE ranged between $0.337/kWh and $0.564/kWh. The lowest COE of $0.377/kWh is obtained when using a combined control strategy and SWRO-100 unit, whereas the worst COE of $0.564/kWh is obtained when using load following control strategy and SWRO-150 unit. The best option of the WT/DG/BS system to supply the SWRO unit is option number 26. This system includes one wind turbine of 90 kW, DG of 25 kW, 47 Trojan SAGM batteries, a 23.8 kW converter, a SWRO-100 unit, and a combined control strategy. The net present cost and the initial cost are $950,725 and $221,495, respectively. The annual operating cost and annual consumed fuel are $56,409 and 36,396 L, respectively. Compared with using only a 25 kW diesel generator, the COE reduced from $0.373/kWh (using only DG/BS) to $0.337/kWh (using the best option) by around 9.65%. Under this condition, the values for the internal rate of return, return on investment, and simple payback are 11%, 7.8%, and 8.3 years, respectively.

Funder

Ministry of Education – Kingdom of Saudi Arabia

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3