Engineering Application of Nanomaterial and Ferroelectric Domain Polarization to the Dynamic Structure of the Surrounding Rock of Heavy-Duty Railway with Small Clear Intersection Tunnel

Author:

Hao Xiaotian12,Wang Hailong13ORCID

Affiliation:

1. School of Traffic and Transportation, Shi Jia Zhuang Tiedao University, ShiJiaZhuang 050043, HeBei, China

2. School of Urban Construction Engineering, Chongqing Technology and Business Institute, ChongQing 400052, Chongqing, China

3. School of Civil Engineering, Hebei University of Architecture, Zhangjiakou 075000, Hebei, China

Abstract

With the development of national railways and railways as one of the important channels for heavy-haul transportation, the construction of heavy-haul railways must be a rapid development, which makes it inevitable that the heavy-duty situation of small-distance interchange tunnels will appear. Nanomaterials refer to materials that have at least one dimension in the three-dimensional space in the nanoscale range (1 nm∼100 nm) or are composed of them as basic units. Ferroelectric domain polarization refers to the existence of electric domains in ferroelectrics, electric domains refer to small regions with the same spontaneous polarization direction, and the boundaries between electric domains and electric domains are called domain walls. It is also urgent to study the dynamic structure of the surrounding rocks of heavy-duty railways. This article aims to study the use of nanomaterial and ferroelectric domain technology to improve the overall strength, wear resistance, toughness, and other properties of steel to ensure the safety of the surrounding rock dynamic structure of the heavy-duty railway in the small clearance intersecting tunnel. Moreover, on this basis, this article proposes the method of spraying steel with nanomaterials and the use of ferroelectric domain polarization technology. The strength and wear resistance of steel can be improved under different nanomaterial content and the degree of ferroelectric domain polarization. Sustainability and toughness have been improved, respectively. After the wear resistance experiment and analysis, the experimental results of this article show that the impact resistance of the steel increased by 18.75%. When 0.012% of CeO2 is added, the impact toughness of the steel is increased to the maximum of 3.4 J, an increase of 16.31%, and a 37% increase in wear resistance. Under the premise of ensuring the demand for heavy-duty transportation, the safety performance and sustainability of transportation are greatly improved.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3