Improving Electromagnetic Shielding Ability of Plaster-Based Composites by Addition of Carbon Fibers

Author:

Samkova A.1ORCID,Kulhavy P.2ORCID,Tunakova V.1,Petru M.2ORCID

Affiliation:

1. Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic

2. Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic

Abstract

The size of electromagnetic shielding in plaster composites by the means of different volume fractions of carbon fibers was studied in this paper. Conventional types of plaster, which are commonly used in industry, that is, cement, lime, gypsum, and lime cement (Thermo UM), were the base materials of the created composites. The fundamental idea of improving the electromagnetic shielding properties was verified based on a numerical simulation conducted by means of electromagnetic module in Comsol Multiphysics. The carbon microfibers with the above-critical length of 8 mm were added as the reinforcing and simultaneously shielding element into the plaster samples. From the viewpoint of the mechanical properties, fibers shorter than the critical length do not provide sufficient reinforcement. The samples were created at three different volume fractions of the dispersion and one without any reinforcement for the possibilities of their mutual comparison. The results of the carried measurement show that the electromagnetic shielding in the plaster composite grows with the increase of fiber content within the tested ratio proportionately. Also, the dependency of shielding ability on the inner material moisture has been studied. Any measureable influence of the moisture content on to the total shielding effect has not been found. Only in the lime plaster reinforced with fibers, the increased moisture could significantly decrease the shielding effect.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference37 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3