Experimental Study on the Anisotropy of Layered Rock Mass under Triaxial Conditions

Author:

Cheng Long1ORCID,Wang Hui1ORCID,Chang Xu2,Chen Yewei3,Xu Feilu4,Zhang Bafang5,An Jiawei3

Affiliation:

1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. School of Civil Engineering, Huaqiao University, Xiamen 361021, China

3. China Construction Fourth Engineering Division Co., Ltd., Guangzhou 510000, China

4. Xiamen Luhengda Construction Engineering Co., Ltd., Xiamen 361021, China

5. Jianyan Test Group Co., Ltd., Xiamen 361021, China

Abstract

Weak and hard inhomogeneous rock formations are typically encountered during tunnel excavations. The physical and mechanical properties and geological conditions of these rock formations vary significantly; thus, it is crucial to investigate the mechanical characteristics of deep bedded composite rock formations. Three-dimensional (3D) scanning and 3D printing were used to prepare composite rock specimens to simulate natural rock laminae. Triaxial compression tests were conducted to determine the influence of the bedding angle, rock composition, and confining pressure on the mechanical properties of the composite rock specimens. The anisotropic strength characteristics and the damage patterns of the composite rock specimens were analyzed under different confining pressures, and the failure mechanism during triaxial loading was revealed. The results show that the damage of the composite rock specimens with a bedding structure depends on the bedding dip angle and the rock formation. The stress-strain curves and peak strengths of the composite rock specimens have anisotropic characteristics corresponding to their failure modes. As the bedding dip angle increases, the peak strength of the three groups of specimens first decreases and then increases under different confining pressure levels. The compressive strength has a nonlinear relationship with the confining pressure, and the difference between the compressive strengths of specimens with different inclination angles decreases as the confining pressure increases. The Hoek–Brown strength criterion is a good predictor of the nonlinear increase in peak strength of the composite rock specimens under different confining pressures. The specimen with a β  = 60°dip angle shows the most significant increase in the strength difference with increasing confining pressure. The results can be used as a reference for testing and analyzing the anisotropic mechanical properties of bedded rock masses.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3