Affiliation:
1. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
Abstract
Temperature stability is critical to the consistency of product quality in the injection molding process, and it is very necessary to improve the temperature control accuracy under dynamic conditions. However, due to the large time delay, strong coupling, and the dynamic characteristics existing in the system, it is not an easy task to achieve precise temperature control in the injection molding process. In this paper, a new intelligent temperature compensation control strategy for the injection molding process under dynamic conditions is proposed in order to solve two key problems in the compensation control strategy: the compensation time and compensation quantity. A data-based feedforward iterative learning control (ILC) algorithm is designed to learn the optimal compensation time. Once the optimal compensation time is learned, a deep Q-learning algorithm which combined Q-learning with an artificial neural network (ANN) is proposed to learn the optimal compensation quantity. An experimental platform is designed to validate the superiority of the proposed method. Experimental results show that the proposed method can effectively improve temperature control accuracy under dynamic conditions. Meanwhile, the product consistency has also been improved.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献