Sorptive Removal of Color Dye Safranin O by Fibrous Clay Minerals and Zeolites

Author:

Sieren Ben1,Baker Jessica1,Wang Xisen2,Rozzoni Samuel J.2,Carlson Kristen1,McBain Alyssa1,Kerstan Daniel1,Allen Lori2,Liao Libing3ORCID,Li Zhaohui1ORCID

Affiliation:

1. Department of Geosciences, University of Wisconsin–Parkside, 900 Wood Road, Kenosha, WI 53144, USA

2. Department of Chemistry, University of Wisconsin–Parkside, 900 Wood Road, Kenosha, WI 53144, USA

3. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 29 Xueyuan Road, Beijing 100083, China

Abstract

The increased use of color dyes in industry imposes a great threat to the environment. As such, developing cost-effective techniques for dye removal from wastewater attracted great attention. Earth materials, particularly those with large specific surface area (SSA) and high cation exchange capacity (CEC), were evaluated for their potential use for wastewater treatment. In this study, palygorskite, sepiolite, and clinoptilolite were evaluated for their removal of cationic dyes using safranin O (SO+) as a model compound. The CEC values of the materials played a key role in SO+ removal while other physicochemical conditions, such as temperature, equilibrium solution pH, and ionic strength, had less influence on SO+ removal. Sorbed SO+ cations were limited to the external surfaces of the minerals, as their channel sizes are less than the size of SO+ cation. Molecular dynamic simulations showed dense monolayer SO+ uptake on palygorskite due to its relatively large CEC value. In contrast, loosely packed monomer SO+ uptake was adopted on sepiolite for its large SSA and low CEC. Dense multilayers or admicelles of SO+ formed on zeolite surfaces. As such, for the best SO removal, palygorskite is better than sepiolite, though both are fibrous clay minerals.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3