Mapping Global Solar Radiation from Long-Term Satellite Data in the Tropics Using an Improved Model

Author:

Janjai S.1ORCID,Masiri I.1,Pattarapanitchai S.1,Laksanaboonsong J.1

Affiliation:

1. Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

Abstract

This paper presents an improved model and its application for mapping global solar radiation from satellite data in the tropics. The model provides a more complete description of the absorption and scattering of solar radiation in the earth-atmosphere system as compared to the earlier models. The study is conducted in the tropical environment of Thailand. Digital data from the visible channel of GMS4, GMS5, GOES9, and MTSAT-1R satellites collected during a 15-year period (1995–2009) are used as a main input to the model. Satellite gray levels are converted into earth-atmospheric reflectivity and used to estimate the cloud effect. The absorption of solar radiation due to water vapour is computed from precipitable water derived from ambient temperature and relative humidity. The total ozone column data from TOMS/EP and OMI/AURA satellites are used to compute solar radiation absorption by ozone. The depletion of solar radiation due to aerosol is estimated from visibility data. In order to test its performance, the model is employed to calculate monthly average daily global solar radiation at 36 solar monitoring stations across the country. It is found that solar radiation calculated from the model and that obtained from the measurement are in good agreement, with a root mean square difference of 5.3% and a mean bias difference of 0.3%. The model is used to calculate the monthly average daily global solar radiation over the entire country, and results are displayed as monthly and yearly maps. These maps reveal that the geographical distribution of solar radiation in Thailand is strongly influenced by the tropical monsoons and local geographical features.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3