Semantic Trajectory Frequent Pattern Mining Method with Fuzzy Stay Time Constraint

Author:

Li Aiguo1ORCID,Fu Jiahao1ORCID,Gao Ruifang1ORCID,Yang Jie1ORCID

Affiliation:

1. School of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

In the security system, transforming a large number of collected target trajectories into semantic trajectories with a less volume and high quality and mining their frequent patterns are helpful to analyze the target behavior patterns, identify hazard sources, and enhance the internal prevention, and control of the security system. Aiming at the limitation of semantic trace frequent pattern mining method defined by precise stay time in practical application scenarios, a fuzzy semantic trace frequent pattern mining method is proposed. Firstly, the membership function of fuzzy stay time is defined, so the stay time of the target at the stay point is fuzzified, and the fuzzy semantic trajectory is obtained. Then, a fuzzy semantic trajectory frequent pattern mining algorithm FST-FPM (fuzzy semantic trajectory frequent pattern mining) is proposed. The FST-FPM algorithm is experimentally verified on the Geolife public dataset and the self-collected RFID positioning dataset. The experimental results show that FST-FPM algorithm can mine frequent patterns of fuzzy semantic trajectories on Geolife dataset and RFID positioning dataset, and the running time is reduced by more than 10% compared with classical PrefixSpan algorithm, PrefixSpan-x algorithm, and LFFT2 algorithm.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3