KlugOculus: A Vision-Based Intelligent Architecture for Security System

Author:

Rathour Navjot1ORCID,Singh Rajesh1ORCID,Gehlot Anita1ORCID,Priyadarshi Neeraj2ORCID,Khan Baseem3ORCID

Affiliation:

1. Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand 248007, India

2. CTiF Global Capsule, Dept. of Business Development and Technology, Aarhus University, Herning 7400, Denmark

3. Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia

Abstract

Vision-based system has gained significant attention in detecting the abnormal activities of intruders and alerting security with the amalgamation of adaptive video analytics techniques. The implementation of this kind of system works on face recognition, where the dedicated hardware with better computation power is limited in the previous studies. In this study, vision-based intelligent architecture and systems are proposed to detect intruders through facial recognition and sensors with customized hardware. As a part of the training, each subject was trained with 6 different pictures for a total of 120 images. Facial recognition implemented with machine learning (ML) inspired support vector machine (SVM) along with a histogram of oriented gradients (HOG). During the real-time implementation, the SVM model loaded in Raspberry Pi 3 has attained 99.9% accuracy for 20 different subjects. The proposed system can provide an accuracy of 99.9% even with tilted images of the subject, so it can be adopted by the different security personnel to boost the security system for the identification of intruders.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signal Quality Assessment for Speech Recognition using Deep Convolutional Neural Networks;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

2. Lightweight Cryptography Approach for Multifactor Authentication in Internet of Things;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3