Experimental Study on the Property Degradation and Failure Mechanism of Weakly Cemented Sandstone under Dry-Wet Cycles

Author:

Song Zhaoyang1ORCID,Sun Lihui2ORCID,Cheng Shouye1,Liu Zhiqiang1,Tan Jie1,Ning Fangbo1

Affiliation:

1. Beijing China Coal Mine Engineering Company Limited, Beijing 100013, China

2. School of Mining and Geomatics, Hebei University of Engineering, Handan, Hebei 056038, China

Abstract

Taking the weakly cemented sandstone of Ordos, China, as the research object, the evolution law between the relative stress of weakly cemented sandstone and the multiparameters of the acoustic emission under different dry-wet cycles was explored, and the critical failure identification mode of weakly cemented sandstone under dry-wet cycle was established. The results show that as the number of dry-wet cycles increases, the wave velocity loss rate gradually increases. Overall, the longitudinal wave loss rate is larger than the shear wave loss rate, indicating that the longitudinal wave is more sensitive to the degradation of weakly cemented sandstone. With an increase in the number of dry-wet cycles, the crack is mainly caused by the main crack penetration failure, and the secondary crack is significantly reduced. The fractal dimension decreases with an increase in the dry-wet cycles and reaches its maximum at 0 dry-wet cycles, which means that 0 dry-wet cycles witness the most complex morphology of fractures within the weakly cemented sandstone. This finding indicates that the dry-wet cycle inhibits the generation and expansion of fractures. The event rate appears to be close to 0 before the rupture, and then the platform oscillates, followed by a sudden increase. The acoustic emission b value is relatively high during the initial stage and then decreases, which is the initial damage process. The elastoplastic phase rises again, the peak stage decreases rapidly, and the weakly cemented sandstone undergoes unstable damage. The change in the acoustic emission entropy value is exactly the opposite of the b value change law. When the weakly cemented sandstone reaches the critical failure state under different dry-wet cycles, the relative stress value is 95%. The test results provide new methods and a basis for the damage evolution mechanism and fracture prediction of weakly cemented sandstone under dry-wet cycles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference41 articles.

1. Analysis on the microstructure evolution and fracture morphology during the softening process of weakly cemented sandstone;H. G. Ji;Journal of China Coal Society,2018

2. Evolution of surrounding rock in pioneering roadway with very weakly cemented strata through monitoring and analysising;Q. B. Meng;Journal of China Coal Society,2013

3. Influencing factors of excavation disturbance on neighboring roadways in weakly cemented rock;Z. Y. Song;J Min & Safety Eng,2016

4. Research on deformation failure characteristics of the deep high–stress soft rock roadways;Q. B. Meng;J Min & Safety Eng,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3