Study on the Influential Factors of Noise Characteristics in Dense-Graded Asphalt Mixtures and Field Asphalt Pavements

Author:

Guo Zhaoyang12,Yi Junyan1ORCID,Xie Sainan1,Chu Jianpeng1,Feng Decheng1ORCID

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

2. Transport Construction Engineering Quality Supervision Bureau of Inner Mongolia Autonomous Region, Hohhot 010020, China

Abstract

Determining the influential factors of noise characteristics in dense-graded asphalt mixtures and field asphalt pavement is important in constructing highways that are both low noise and environmentally friendly. In this study, the effects of nominal maximum aggregate size, asphalt binder type, air void percentage, and the service life of pavement on the noise absorption characteristics of asphalt mixtures were first investigated in laboratory. Thereafter, tire/pavement noise measurements were conducted on different types of dense-graded asphalt pavements. The effects of the service lives of the pavements, the types of the pavements, driving speeds, and test temperatures on the noise levels of the pavements were also studied. The Zwicker method is used to calculate psychoacoustic parameters on the tire/pavement noise spectrum. The laboratory results indicate that reducing the nominal maximum aggregate size, using rubber asphalt, and increasing air void percentage as well as surface texture depth improve the sound absorption performance of asphalt mixtures. The field measurements show that laying down asphalt pavements with a shorter service life or larger texture depth, using rubber asphalt, reducing traffic speed, and increasing air temperature can reduce noise.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3