Application of Wasted Oolong Tea as a Biosorbent for the Adsorption of Methylene Blue

Author:

Hu Yunfei1,Zhang Yue1,Hu Yuqun1,Chu Chen-Yao1ORCID,Lin Jinke1ORCID,Gao Shuilian1,Lin Dongyi1,Lu Jing1,Xiang Ping1,Ko Tzu-Hsing1ORCID

Affiliation:

1. Anxi College of Tea Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China

Abstract

Tea powder, a biosorbent prepared from wasted oolong tea, was collected as a prospective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. The effect of factors on adsorption efficiency, isotherms, kinetics, and potential mechanism was carried out. Adsorption capacity of MB onto wasted tea powder increased with the MB concentration and contact time, whereas the increase in pH value and ion strength appeared to have a negative effect for the adsorption process. The adsorption efficiency increased rapidly and reached a stable state within 120 min. The optimal tea powder loading weight is suggested to be at 0.1 to 0.2 g, and the highest efficiency of 94.8% is achieved at 333 K. There were no significant changes in adsorption efficiency when the effect of temperature is considered. The Langmuir isotherm model was found to be the best isotherm models to elucidate the adsorption mechanism in this study. The maximum adsorption capacities calculated at different temperatures by the Langmuir model ranging from 312.5 to 333.3 mg·g−1 were much close to the experimental results. From the kinetic analysis, the pseudo--second-order model was found to be the best model to describe the adsorption behavior. The calculated adsorption capacities at different initial MB concentrations by the pseudo-second-order model ranging from 92.34 to 400 mg·g−1 were well close to the experimental data. The fitting results obtained from the intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step and some other mechanisms along with the intraparticle diffusion were probably involved. The intraparticle diffusion of MB molecules into pore structures of wasted tea powder is the rate-limiting step for the adsorption process in this study. The repetitive cycle experiments indicated that the wasted oolong tea powder was efficiently regenerated using NaOH and thus be used for many times.

Funder

Department of Education, Fujian Province

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3