Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks

Author:

Alrajeh Nabil Ali1,Lloret J.2

Affiliation:

1. Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh 11633, Saudi Arabia

2. Department of Communications, Universidad Politecnica de Valencia, Camino de Vera, 46022 Valencia, Spain

Abstract

Intrusion detection system (IDS) is regarded as the second line of defense against network anomalies and threats. IDS plays an important role in network security. There are many techniques which are used to design IDSs for specific scenario and applications. Artificial intelligence techniques are widely used for threats detection. This paper presents a critical study on genetic algorithm, artificial immune, and artificial neural network (ANN) based IDSs techniques used in wireless sensor network (WSN).

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taxonomy of deep learning-based intrusion detection system approaches in fog computing: a systematic review;Knowledge and Information Systems;2024-07-05

2. Performance Evaluation of Machine Learning Models for Intrusion Detection in Wireless Sensor Networks: A Case Study Using the WSN DS Dataset;Lecture Notes in Networks and Systems;2024

3. Cybersecurity in Politics;Artificial Intelligence, Game Theory and Mechanism Design in Politics;2023

4. A novel methodology for enhancing intrusion detection system;i-manager’s Journal on Software Engineering;2023

5. A Machine Learning Approach to Analyze Cloud Computing Attacks;2022 5th International Conference on Contemporary Computing and Informatics (IC3I);2022-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3