SIFT Feature-Based Video Camera Boundary Detection Algorithm

Author:

Kong Lingqiang1ORCID

Affiliation:

1. Media & Communication College, Shandong University of Arts, Shandong, Jinan 250014, China

Abstract

Aiming at the problem of low accuracy of edge detection of the film and television lens, a new SIFT feature-based camera detection algorithm was proposed. Firstly, multiple frames of images are read in time sequence and converted into grayscale images. The frame image is further divided into blocks, and the average gradient of each block is calculated to construct the film dynamic texture. The correlation of the dynamic texture of adjacent frames and the matching degree of SIFT features of two frames were compared, and the predetection results were obtained according to the matching results. Next, compared with the next frame of the dynamic texture and SIFT feature whose step size is lower than the human eye refresh frequency, the final result is obtained. Through experiments on multiple groups of different types of film and television data, high recall rate and accuracy rate can be obtained. The algorithm in this paper can detect the gradual change lens with the complex structure and obtain high detection accuracy and recall rate. A lens boundary detection algorithm based on fuzzy clustering is realized. The algorithm can detect sudden changes/gradual changes of the lens at the same time without setting a threshold. It can effectively reduce the factors that affect lens detection, such as flash, movies, TV, and advertisements, and can reduce the influence of camera movement on the boundaries of movies and TVs. However, due to the complexity of film and television, there are still some missing and false detections in this algorithm, which need further study.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference32 articles.

1. Video Shot Boundary Detection in Sport Video Using the Scale Invariant Feature Transform

2. Video shot boundary detection using the scale invariant feature transform and RGB color channels;Z. E. Khattabi;International Journal of Electrical & Computer Engineering,2017

3. Fuzzy color distribution chart -based shot boundary detection

4. Video’s Cut Transitions Detection Based on Multiple Features

5. Clustering Media Items Stemming from Multiple Social Networks

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3