Removal of Tricyclazole and Total Organic Carbon in Real Pesticide Wastewater by Electro-Fenton

Author:

Bui Ha Manh1ORCID,Huynh Loan Ngoc2ORCID

Affiliation:

1. Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 70000, Vietnam

2. Institute for Environment and Resources, Vietnam National University of Ho Chi Minh City, Thu Duc City, Ho Chi Minh City 70000, Vietnam

Abstract

In this study, electro-Fenton (EF) was employed for the removal of tricyclazole (TC) and total organic carbon (TOC) in real pesticide wastewater (RPW). The central composite design (CCD) with three parameters, that is, current density, Fe2+ concentration, and electrolysis time, has been conducted to predict the TOC and TC removal efficiency. The high correlation of the quadratic models of 0.9842 and 0.9781 for TC and TOC removal, respectively, indicates the significance of the models. The obtained results revealed that the high-efficiency removal of both TC and TOC in RPW. Approximately 99.6% of TC was decomposed under the optimum conditions of a current density of 2.2 mA/cm2 and an Fe2+ concentration of 0.2 mM during 188 min with an operating cost of 121.392 $/kg TC or ∼2.692 $/m3, while 84.2% TOC was eliminated at a current density of 2.2 mA/cm2 and an Fe2+ concentration of 0.2 mM during 217 min with an operating cost of 3.019 $/kg TOC or 3.916 $/m3. Acute toxicity tests at optimal condition revealed moderate exhibition toxicity of treated wastewater against Daphnia magna with LC50 values of 3.12%, 2.05%, 1.84%, and 1.36% at 24 h, 48 h, 72 h, and 96 h, respectively. The removal of TC and TOC followed pseudo-first-order kinetic with an R2 of ∼0.993 and 0.923, respectively.

Funder

Vietnam National University

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3