Analysis on COVID-19 Infection Spread Rate during Relief Schemes Using Graph Theory and Deep Learning

Author:

Palanivinayagam Ashokkumar1ORCID,Panneerselvam Ramesh Kumar2,Kumar P. J.3,Rajadurai Hariharan4,Maheshwari V.3,Allayear Shaikh Muhammad5ORCID

Affiliation:

1. Sri Ramachandra Engineering and Technology, Sri Ramachandra Institute of Higher Education and Research, India

2. Department of Computer Science and Engineering, V R Siddhartha Engineering College, Vijayawada, AP, India

3. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

4. School of Computing Science and Engineering, VIT Bhopal University, Bhopal–Indore Highway Kothrikalan, Sehore, MP, India

5. Department of Multimedia and Creative Technology, Daffodil International University, Daffodil Smart City, Khagan, Ashulia, Dhaka, Bangladesh

Abstract

The novel coronavirus 2019 (COVID-19) disease is a pandemic which affects thousands of people throughout the world. It has rapidly spread throughout India since the first case in India was reported on 30 January 2020. The official report says that totally 4, 11,773 cases are positive, 2, 28,307 recovered, and the country reported 12,948 deaths as of 21 June 2020. Vaccination is the only way to prevent the spreading of COVID-19 disease. Due to various reasons, there is vaccine hesitancy across many people. Hence, the Indian government has the solution to avoid the spread of the disease by instructing their citizens to maintain social distancing, wearing masks, avoiding crowds, and cleaning your hands. Moreover, lots of poverty cases are reported due to social distancing, and hence, both the center government and the respective state governments decide to issue relief funds to all its citizens. The government is unable to maintain social distancing during the relief schemes as the population is huge and available support staffs are less. In this paper, the proposed algorithm makes use of graph theory to schedule the timing of the relief funds so that with the available support staff, the government would able to implement its relief scheme while maintaining social distancing. Furthermore, we have used LSTM deep learning model to predict the spread rate and analyze the daily positive COVID cases.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3